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LAr Mass 

Total Active  

LAr1-ND 180t 82t 

MicroBooNE 170t 89t 

T600 760t 476t 
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NuMI	  
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Sensitivity Overview
❖ Sensitivity to νμ → νe (νe appearance) signals using inclusive νe 

charged-current event samples
– All known backgrounds included
– Detailed systematics evaluation, correlations between data sets
– Some conservative choices & assumptions where future improvement will be possible

❖ Sensitivity to νμ → νx (νμ disappearance) signals using inclusive 
νμ  charged-current events also evaluated
– Important capability with an accelerator decay-in-flight beam experiment that is 

complementary to an appearance search for sterile neutrino oscillations 

❖Appearance (νe) and disappearance (νμ) analyses currently 
performed independently
– Simultaneous analysis of νe/νμ, including correlations between samples, will greatly 

improve ability to understand any new physics signals
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A Note on Simulations
❖ Monte Carlo simulation in three steps:
1) BNB fluxes and systematics evaluated using a mature Geant4 simulation developed for 

MiniBooNE and constrained with dedicated external hadron production data
๏ A.A. Aguilar-Arevalo et al. (MiniBooNE Collaboration), “The Neutrino Flux Prediction at MiniBooNE,” Phys.Rev. D79, 

072002 (2009), arXiv:0806.1449 [hep-ex]

๏ M.G. Catanesi et al. (HARP Collaboration), “Measurement of the production cross-section of positive pions in the collision 
of 8.9-GeV/c protons on beryllium,” Eur.Phys.J. C52, 29–53 (2007), arXiv:0702024 [hep-ex]
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๏ M.G. Catanesi et al. (HARP Collaboration), “Measurement of the production cross-section of positive pions in the collision 
of 8.9-GeV/c protons on beryllium,” Eur.Phys.J. C52, 29–53 (2007), arXiv:0702024 [hep-ex]

2) Neutrino-Argon interactions and systematics evaluated using the GENIE event 
generator; cross checked against an independent FLUKA simulation in T600

๏ C. Andreopoulos et al., “The GENIE Neutrino Monte Carlo Generator,” Nucl. Instrum. Meth. A614, 87–104 (2010), arXiv:
0905.2517 [hep-ph]

๏ G. Battistoni, A. Ferrari, M. Lantz, P. R. Sala, and G. I. Smirnov, “A neutrino-nucleon interaction generator for the FLUKA 
Monte Carlo code,” in CERN-Proceedings-2010-001, pp. 387–394.
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2) Neutrino-Argon interactions and systematics evaluated using the GENIE event 
generator; cross checked against an independent FLUKA simulation in T600

๏ C. Andreopoulos et al., “The GENIE Neutrino Monte Carlo Generator,” Nucl. Instrum. Meth. A614, 87–104 (2010), arXiv:
0905.2517 [hep-ph]

๏ G. Battistoni, A. Ferrari, M. Lantz, P. R. Sala, and G. I. Smirnov, “A neutrino-nucleon interaction generator for the FLUKA 
Monte Carlo code,” in CERN-Proceedings-2010-001, pp. 387–394.

3) Particle propagation in argon volumes simulated using Geant4 or FLUKA

For beam events, same simulation used in ALL three detectors, 
so sample correlations can be evaluated from Monte Carlos

4



SBN:	  Fermilab	  PAC,	  January	  2015

A Note on Event Selections

5



SBN:	  Fermilab	  PAC,	  January	  2015

A Note on Event Selections
❖ Events are currently selected for signal and background samples 

based on MC truth information about the final state

5



SBN:	  Fermilab	  PAC,	  January	  2015

A Note on Event Selections
❖ Events are currently selected for signal and background samples 

based on MC truth information about the final state

❖ The efficiencies that get applied to different event topologies are 
informed by inputs from other simulation results, hand-scanning 
studies of both simulated and real events in different detectors, and 
analysis results from LAr-TPC experiments (e.g. ICARUS, ArgoNeuT)

5



SBN:	  Fermilab	  PAC,	  January	  2015

A Note on Event Selections
❖ Events are currently selected for signal and background samples 

based on MC truth information about the final state

❖ The efficiencies that get applied to different event topologies are 
informed by inputs from other simulation results, hand-scanning 
studies of both simulated and real events in different detectors, and 
analysis results from LAr-TPC experiments (e.g. ICARUS, ArgoNeuT)

❖ Observation thresholds are applied based on relevant experience 
from other detectors (e.g. 21 MeV proton threshold in ArgoNeuT data)

5



SBN:	  Fermilab	  PAC,	  January	  2015

A Note on Event Selections
❖ Events are currently selected for signal and background samples 

based on MC truth information about the final state

❖ The efficiencies that get applied to different event topologies are 
informed by inputs from other simulation results, hand-scanning 
studies of both simulated and real events in different detectors, and 
analysis results from LAr-TPC experiments (e.g. ICARUS, ArgoNeuT)

❖ Observation thresholds are applied based on relevant experience 
from other detectors (e.g. 21 MeV proton threshold in ArgoNeuT data)

❖ ‘Reconstructed Neutrino Energy’ is calculated by summing energies 
of visible final state particles. True energies are smeared according to 
expected resolutions (15%/√E for e.m. showers, 5% for hadrons, etc.)
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νe CC Signal & Background Categories
❖ Electron neutrino CC interactions 
– π → μ → νe 
– K+ → νe 
– K0 → νe 

– Sample appearance signal 

❖ Photon-induced e.m. shower backgrounds 

– NC misIDs 

– νμ CC misIDs 

– “Dirt” Backgrounds: beam-related but    
out-of-detector interactions 

– Cosmogenic photon sources 
6

Intrinsic	  beam	  νeLAr1-‐ND

MicroBooNE

ICARUS	  T600
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Electromagnetic Shower Selection
❖ We require the electromagnetic shower in all selected events 

to be initiated with E > 200 MeV 
๏ Ee for electron showers 
๏ Eγ for gamma pair production events 
๏ Ee for gamma Compton scattering events
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Electromagnetic Shower Selection
❖ We require the electromagnetic shower in all selected events 

to be initiated with E > 200 MeV 
๏ Ee for electron showers 
๏ Eγ for gamma pair production events 
๏ Ee for gamma Compton scattering events

❖This minimum shower threshold is applied to help ensure good 
reconstruction and identification of signal events

❖Note the threshold for analysis of events in LAr should be below 
this and lower energy events will certainly be studied in the SBN 
experiments, they are just not included here
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Electromagnetic Shower ID Efficiencies
❖ Electron showers: 
– 80% identification efficiency applied to charged-current inclusive sample for intrinsic 

and signal electron neutrinos (after 200 MeV requirement)  

❖ Individual photon showers: 
– 94% rejection of single photon pair production showers (γ→e+e-) based on expected 

performance of dE/dx analysis to identify 2 mips at the start of the shower 
– Single photon Compton scatters are retained as an irreducible background

8

ICARUS	  
simulation

dE/dx	  (MeV/cm)dE/dx	  (MeV/cm)

ArgoNeuT	  
data

3.5	  MeV/cm 3.5	  MeV/cm



SBN:	  Fermilab	  PAC,	  January	  2015

NC Photon Final States

9

❖ Neutral current π0 → γγ	

– If both photons convert above threshold 

in TPC volume, can reject 
– If only one converts: 
๏ Look for a visible event vertex and a gap 

before the e.m. shower 
๏ dE/dx cut to reject pair production 

❖ Neutral current single γ final 
states 
๏ Look for a visible event vertex and a gap 

before the e.m. shower 
๏ dE/dx cut to reject pair production

Vertex Requirement: > 50MeV
Gap Requirement > 3cm

e.m.	  shower

Conversion	  Gap	  +	  dE/dx
Summary:
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νμ CC Interactions
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❖ Minimum ionizing tracks 
longer than 1m in BNB events 
are almost all muons 

❖ Events with longest track       
≥ 1m are rejected as νμ CC 

❖ When longest track < 1m and 
there is an e.m. shower in the 
final state, the shower is 
analyzed as in the NC case

BNB	  events

muons
pions

Ar
bi
tr
ar
y

Track	  Length	  [cm]

Ltrack	  +	  Conversion	  Gap	  +	  dE/dx
Summary:
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“Dirt” Backgrounds
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❖ Single photon 
entering the 
detector creates 
a potential 
background 

❖ Helped by short 
radiation length 
in argon (14 cm)
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dE/dx	  +	  Fiducial	  Volume	  Buffer
Summary:

❖ Chose a very conservative 25 cm buffer around the 
fiducial volume to minimize dirt contamination (also 
reduce external cosmogenic photons) 

❖ Will be revisited in future to optimize against fiducial 
volume loss 

❖ Apply more sophisticated external photon ID (e.g. 
distance to wall in reverse shower direction)  
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Cosmogenic Backgrounds
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❖ The problem: 1000x longer 
charge drift time than the 
beam spill length 
– 1.6 μs beam spill 

– ~1 ms TPC drift time

Cosmic	  muons	  
per	  readout

Neutrino	  interaction	  
every	  N	  spills

Cosmic	  muon	  in	  beam	  	  
spill	  every	  N	  spills

LAr1-‐ND 2.9 25 300
MicroBooNE 5.0 800 200

T300 5.5 500 100



SBN:	  Fermilab	  PAC,	  January	  2015

Cosmogenic Backgrounds

14

❖ Again, the 14cm radiation length is a help 
– Any primary photons that penetrate the shielding or are produced by other primaries 

around the detector will convert mostly near the TPC active volume boundaries 

❖ Dominant source of cosmogenic e.m. showers in the TPC are, 
therefore, muons that also enter the TPC.   

γ	  In	  Spill	  Time

γ In	  Drift	  
(muon	  in	  spill)

⇥Ndrift
µ
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❖ Again, the 14cm radiation length is a help 
– Any primary photons that penetrate the shielding or are produced by other primaries 

around the detector will convert mostly near the TPC active volume boundaries 

❖ Dominant source of cosmogenic e.m. showers in the TPC are, 
therefore, muons that also enter the TPC.   
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Cosmogenic Backgrounds
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❖ Topology I: parent muon enters the active volume 
❖ Reject showers within a cylinder around all muon tracks (reject ~99%) 
❖ dE/dx for pair production showers (reject 94%) 

❖ Topology II: primary photon or parent is not visible 
❖ dE/dx for pair production showers (reject 94%)

γ	  In	  Spill	  Time

γ In	  Drift	  
(muon	  in	  spill)

⇥Ndrift
µ
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νe CC Signal & Background Categories
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LAr1-‐ND

MicroBooNE

ICARUS	  T600

❖ Cosmic selection shown to the left relies 
entirely on proximity to parent muon and dE/dx 
for photon showers to ID cosmogenic photons 
๏ Rate reduced >99% by topological cuts, but 

remaining background populates at low 
reconstructed energies 

❖ Precise timing information can augment the 
TPC data to reject triggers where the 1.6 µs 
beam spill time is contaminated by a cosmic 
event in or near the detector 

❖ Combination of  internal light signals and 
an independent external tracking array to 
ID muons near the detector in the spill time 
can be used to remove cosmogenic events 
in the first stages of  data analysis



SBN:	  Fermilab	  PAC,	  January	  2015

LAr1-‐ND

MicroBooNE

ICARUS	  T600

νe CC Signal & Background Categories
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LAr1-‐ND

MicroBooNE

ICARUS	  T600

small	  loss	  of	  data	  
~1%	  of	  beam	  
triggers	  are	  
rejected

Here a combination of 
information from    

internal light collection 
and external cosmic 
tracking arrays are 

assumed to identify 95% 
of beam spills 

contaminated by a 
cosmic passing near the 

detector
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Analysis Method and Uncertainties
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Monte	  Carlo	  	  
“universes”Error	  matrix

Correlation	  matrix

The	  correlation	  between	  samples	  is	  encoded	  into	  an	  error	  
matrix	  in	  bins	  of	  Ereco	  used	  to	  calculate	  the	  χ2	  statistic



SBN:	  Fermilab	  PAC,	  January	  2015

0

0.2

0.4

0.6

0.8

1

Correlation Matrix

eν
N

D
 eν

uB
 eν

T6
00

 

eνND 

eνuB 

eνT600 

20
0 

M
eV

3 
G

eV
20

0 
M

eV

3 
G

eV
20

0 
M

eV

3 
G

eV

Correlation Matrix

0.2−

0

0.2

0.4

0.6

0.8

1

 3.0 GeV    | − 3.0 GeV    |    0.2 − 3.0 GeV    |    0.2 −|    0.2 

LAr1-ND (100m) MicroBooNE (470m) T600 (600m)

LA
r1

-N
D 

(1
00

m
) 

M
ic

ro
Bo

oN
E 

(4
70

m
)

T6
00

 (6
00

m
)

 Flux Correlation Matrixµν νe	  Flux	  Correlation	  Matrix

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Correlation Matrix

eν
N

D
 eν

uB
 eν

T6
00

 

eνND 

eνuB 

eνT600 

20
0 

M
eV

3 
G

eV
20

0 
M

eV

3 
G

eV
20

0 
M

eV

3 
G

eV

Correlation Matrix

νe	  Cross	  Section	  Correlation	  Matrix

Flux & Cross Section Correlations

20

Flux	  
Systematic

Cross	  Section	  
Systematics

Unconstrained	  
uncertainties	  5-‐10%	  

Unconstrained	  
uncertainties	  10-‐30%	  
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Dirt and Cosmic Uncertainties
❖ “Dirt” background level constrained with beam data
– Study events near the active detector perimeter, with enhanced dirt backgrounds
– Rate depends on details of detectors and surroundings, so measure in each detector
– We estimated it can be measured to ~15%, uncorrelated between detectors
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Dirt and Cosmic Uncertainties
❖ “Dirt” background level constrained with beam data
– Study events near the active detector perimeter, with enhanced dirt backgrounds
– Rate depends on details of detectors and surroundings, so measure in each detector
– We estimated it can be measured to ~15%, uncorrelated between detectors

❖ Cosmic backgrounds constrained with off-beam data
– It was critical to estimate the rates (as we have done) in order to know that oscillation 

signals could be observed over the cosmic background

– The exact rate, however, does not introduce significant systematic uncertainty because 
it can be measured with high precision using off-beam random event triggers 

– For the sensitivity analysis, we construct the cosmic error matrix to account for the 
statistical uncertainty on the predicted sample and assume negligible systematics
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νe Appearance Sensitivity
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LAr1-‐ND

MicroBooNE

ICARUS	  T600
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Impact of  Cosmic Backgrounds
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❖ Stronger rejection of cosmic backgrounds through cosmic 
tagging and timing improves the sensitivity ~0.75σ at low Δm2
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Impact of  νe Statistics
❖ Increased exposure through, for example, improved BNB 

performance has a major impact 
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νμ Disappearance Sensitivity
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Sensitivity	  does	  not	  detector	  systematics	  at	  this	  time.	  	  
Will	  be	  important	  in	  this	  analysis.	  



SBN:	  Fermilab	  PAC,	  January	  2015

Summary
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Backups
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❖ For fixed exposure time, each 10% reduction in signal 

efficiency is about 0.5σ in sensitivity 
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SBN Detectors
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Compare to MiniBooNE Neutrino Mode
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Flux Systematics
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❖ BNB Monte Carlo treats systematic uncertainties related to 
– Primary production of π+, π-, K+, K-, and K0 in p+Be collisions at 8 GeV 
– Secondary interactions of p, n, π± in the beryllium target and aluminum horn 
– Beam focusing with the magnetic horn

Largest	  uncertainty	  (pion	  production)	  constrained	  with	  dedicated	  data	  from	  HARP	  experiment.	  

Kaon	  production	  constrained	  with	  available	  world	  data	  and	  SciBooNE	  measurements	  at	  high	  energy.

HARP	  π+	  data	  
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Cross Section Systematics
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νμ Sensitivity with Detector Systematics
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